A New Triterpenoid Saponin from Aralia subcapitata

Min Liang ZOU, Sheng Min SANG, Zeng Hua XIA, Ai Na LAO*

Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 200031

Abstract: A new oleanane-type saponin, named subcapitatoside **A**, has been isolated from the roots of *Aralia subcapitata*. On the basis of chemical and spectral evidence, the structure of subcapitatoside **A** has been established as: $3-O-\beta$ -D-galactopyranosyl- $(1\rightarrow 2)-\beta$ -D-galacto-pyranosyl oleanolic acid.

Key words: Aralia subcapitata, oleanane-type saponin, subcapitatoside A.

The plants of *Aralia* genus are used as folk medicines for rheumathism, hepatitis and bruise in China ¹. *Aralia subcapitata* Hoo is distributed in Anhui Province of China and also used for the treatment of diabetes. Yang *et al.* ² reported the isolation of four known triterpenoids from this plant. In this paper, we report the structural elucidation of a new triterpenoid saponin, subcapitatoside **A**, isolated from the roots of this plant.

Figure 1: structure of compound 1

Subcapitatoside **A** (1), an amorphous powder, $[\alpha]_{D}^{25}$ +40.3 (c 0.23, MeOH), has a molecular formula $C_{42}H_{68}O_{13}$ determined from its ESI-MS(m/z 803 [M+Na]⁺), ¹³C NMR and DEPT data. The IR absorption bands at 3407 (OH), 1693 (C=O) and 1633cm⁻¹ (C=C) were observed. The ¹HNMR (δ 0.91, 1.04, 1.08, 1.09, 1.17, 1.39, 1.40, each s, CH₃×7; 5.56 t-like, 1H, olefinic proton; 3.38 m, 1H, CH) and ¹³CNMR data (**Table 1**) of **1** indicated that the aglycone was oleanolic acid ³. The disaccharide nature of **1** was manifested by its ¹H (δ 4.95 d, J=7.5Hz; 5.18 d, J=7.6Hz) and ¹³C (δ 105.5, 107.4) NMR

Min Liang ZOU et al.

data. On acid hydrolysis, 1 gave D-galactose and oleanolic acid. In the amplified ¹HNMR spectrum of **1**, four proton signals (δ 4.63 d, J=2.3; 4.31 dd, J=9.5, 2.3; 4.99 d, J=2.6; 4.16 dd, J=9.5, 2.6) further suggested the presence of two D-galactoses. The chemical shifts of C_3 (δ 89.0) and C_{28} (δ 180.3) revealed that 1 was a monodesmosidic glycoside at C-3 of the aglycone. The identity of the monosaccharide and the sequence of the disaccharide chain were determined by a combination of ¹HNMR, ¹³CNMR, DEPT and 2D-NMR experiments. Starting from the anomeric proton of each sugar unit, the hydrogens within each spin system were delineated using ¹H-¹HCOSY with the aid of TOCSY. On the basis of the assigned protons, the ¹³C resonances of each sugar unit were identified by HMQC and further confirmed by HMBC experiments. In the light of the assigned ¹H and ¹³CNMR spectra (Table 1), the two galactoses units were identified as pyranoses ⁴. The β -anomeric configurations for the sugars were determined from their ³J_{H1H2} coupling constants (7-8Hz, **Table 1**). In the 2D-NOESY spectrum, cross peaks were observed between H_3 (δ 3.38) and $H_{1'}$ (δ 4.95), $H_{2'}$ (δ 4.69) and $H_{1''}$ (δ 5.18). The HMBC spectrum showed correlations between C₃ (δ 89.0) and H₁ (δ 4.95), C₂ (δ 83.2) and $H_{1,1}$ (δ 5.18). Thus, subcapitatoside A (1) was determined to be 3-O- β -D-galactopyranosyl- (1 \rightarrow 2) - β -D-galactopyranosyl oleanolic acid (Figure 1).

Table 1: ¹³CNMR data of 1 and ¹HNMR (C₅D₅N, δ in ppm, J in Hz) data of sugar moieties of 1

NO	$\delta_{\rm C}$		NO	$\delta_{\rm C}$		NO	$\delta_{\rm C}$	$\delta_{\rm H}$	
1	38.9	t	16	23.9	t	1'	105.5	d 4.95	d, 7.5
2	26.9	t	17	46.9	s	2'	83.2	d 4.69	m
3	89.0	d	18	42.2	d	3'	75.6	d 4.31	dd, 9.5, 2.3
4	39.8	s	19	46.7	t	4'	70.0	d 4.63	d, 2.3
5	56.1	d	20	31.1	s	5'	76.6	d 4.12	m
6	18.7	t	21	34.4	t	6'	62.4	t 4.48	m, 4.54 m
7	33.4	t	22	33.4	t	1"	107.4	d 5.18	d, 7.6
8	39.9	S	23	28.4	q	2"	74.8	d 4.65	m
9	48.2	d	24	17.0	q	3"	75.3	d 4.16	dd, 9.5, 2.6
10	37.1	S	25	15.7	q	4"	69.9	d 4.99	d, 2.6
11	23.9	t	26	17.6	q	5"	77.0	d 4.01	m
12	122.7	d	27	26.4	q	6"	61.3	t 4.41	m, 4.44 m
13	145.0	s	28	180.3	s				
14	42.3	s	29	33.4	q				
15	28.5	t	30	23.9	q				

References

- 1. Jiangsu New Medical College, *Zhong-yao-da-ci-dian*, Shanghai Science and Technology Publisher, **1986**, p. 2439.
- X. D. Xu, Y. M. Zhang, J. S. Yang, Z. Y. Zhu, Journal of Chinese Materia Medicine, 1998, 23(12), 733.
- 3. M. Maillard, C. O. Adewunmi, K. Hostettman, Phytochemistry, 1992, 31(4), 1322.
- 4. P. K. Agrawal, *Phytochemistry*, **1992**, *31*(10), 3309.

Received 27 March 2000